
Step aside! A fuzzy trip down
side-channel lane
Side-channel assisted fuzzing in embedded systems

Master thesis, Master Computing Science
a.k.a. TRU/e Master in Cyber Security (true-security.nl)

Gerdriaan Mulder, gmulder@ghcm.nl

Supervisor: dr. ir. Erik Poll
Second reader: prof. dr. Lejla Batina

10 December 2020

1/20



“Zoom etiquette”

• During the presentation (± 30 minutes):
– Disable audio transmission.
– Question? Announce it in chat.
– Briefly enable audio transmission when given a turn.

• Question round after the presentation:
– Keep audio transmission disabled.
– Question or comment? Announce it in chat.
– Briefly enable audio transmission when given a turn.

2/20



“Zoom etiquette”

• During the presentation (± 30 minutes):
– Disable audio transmission.
– Question? Announce it in chat.
– Briefly enable audio transmission when given a turn.

• Question round after the presentation:
– Keep audio transmission disabled.
– Question or comment? Announce it in chat.
– Briefly enable audio transmission when given a turn.

2/20



Outline

Context / Preliminaries

Research questions / Case studies

Experiments

Future work

Wrapping up

3/20



Context

Assessing the security of embedded systems:
• Typically no source code available
• Hardware may not be designed to protect secrets
• Introspection or debugging is difficult

• Observe side-channels of the embedded system
• Fuzzing the embedded system

• Fuzzers
• Side-channels
• Embedded system: Smartcards

4/20



Context

Assessing the security of embedded systems:
• Typically no source code available
• Hardware may not be designed to protect secrets
• Introspection or debugging is difficult

Finding flaws in embedded systems:
• Observe side-channels of the embedded system
• Fuzzing the embedded system

• Fuzzers
• Side-channels
• Embedded system: Smartcards

4/20



Context

Assessing the security of embedded systems:
• Typically no source code available
• Hardware may not be designed to protect secrets
• Introspection or debugging is difficult

Finding flaws in embedded systems:
• Observe side-channels of the embedded system
• Fuzzing the embedded system

This thesis combines three topics:
• Fuzzers
• Side-channels
• Embedded system: Smartcards

4/20



Preliminaries — Fuzzers

• Testing many different inputs against a fuzzing target

• Goal: Finding many different execution paths
• Level of insight: White-box, gray-box, black-box
• Types: Generational, mutational, evoluationary, differential

Two fuzzers used in this thesis
• AFL, American Fuzzy Lop[1] (mutational, evolutionary)
• DifFuzz[3]1 (differential, based on AFL)

1 Not part of this presentation

5/20



Preliminaries — Fuzzers

• Testing many different inputs against a fuzzing target
• Goal: Finding many different execution paths

• Level of insight: White-box, gray-box, black-box
• Types: Generational, mutational, evoluationary, differential

Two fuzzers used in this thesis
• AFL, American Fuzzy Lop[1] (mutational, evolutionary)
• DifFuzz[3]1 (differential, based on AFL)

1 Not part of this presentation

5/20



Preliminaries — Fuzzers

• Testing many different inputs against a fuzzing target
• Goal: Finding many different execution paths
• Level of insight: White-box, gray-box, black-box

• Types: Generational, mutational, evoluationary, differential

Two fuzzers used in this thesis
• AFL, American Fuzzy Lop[1] (mutational, evolutionary)
• DifFuzz[3]1 (differential, based on AFL)

1 Not part of this presentation

5/20



Preliminaries — Fuzzers

• Testing many different inputs against a fuzzing target
• Goal: Finding many different execution paths
• Level of insight: White-box, gray-box, black-box
• Types: Generational, mutational, evoluationary, differential

Two fuzzers used in this thesis
• AFL, American Fuzzy Lop[1] (mutational, evolutionary)
• DifFuzz[3]1 (differential, based on AFL)

1 Not part of this presentation

5/20



Preliminaries — Fuzzers

• Testing many different inputs against a fuzzing target
• Goal: Finding many different execution paths
• Level of insight: White-box, gray-box, black-box
• Types: Generational, mutational, evoluationary, differential

Two fuzzers used in this thesis

• AFL, American Fuzzy Lop[1] (mutational, evolutionary)
• DifFuzz[3]1 (differential, based on AFL)

1 Not part of this presentation

5/20



Preliminaries — Fuzzers

• Testing many different inputs against a fuzzing target
• Goal: Finding many different execution paths
• Level of insight: White-box, gray-box, black-box
• Types: Generational, mutational, evoluationary, differential

Two fuzzers used in this thesis
• AFL, American Fuzzy Lop[1] (mutational, evolutionary)
• DifFuzz[3]1 (differential, based on AFL)

1 Not part of this presentation

5/20



Preliminaries — Side-channels

• Observable effects of the execution of a program

• Execution time, or timing side-channel
• Power usage, or power side-channel

1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel

• Power usage, or power side-channel

1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel
• Power usage, or power side-channel

1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel

• Power usage, or power side-channel

Example: PIN2 checker

1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time

2 Personal Identification Number

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel

• Power usage, or power side-channel

Example: PIN2 checker
1. Report correct/incorrect PIN after the first wrong digit

2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time

2 Personal Identification Number

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel

• Power usage, or power side-channel

Example: PIN2 checker
1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time

2 Personal Identification Number

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel

• Power usage, or power side-channel

Example: PIN2 checker
1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!

2. Constant-time

2 Personal Identification Number

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel

• Power usage, or power side-channel

Example: PIN2 checker
1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time

2 Personal Identification Number

6/20



Preliminaries — Side-channels

• Observable effects of the execution of a program
• Execution time, or timing side-channel

• Power usage, or power side-channel

Example: PIN2 checker
1. Report correct/incorrect PIN after the first wrong digit
2. Report correct/incorrect PIN after all digits have been checked

1. Timing side-channel!
2. Constant-time (under certain conditions)

2 Personal Identification Number

6/20



Preliminaries — Side-channels (applications)

1. Uncovering a secret
– PIN, password, secret key, etc.
– “Squeezing a key through a carry bit”, Filippo Valsorda (34C3)

2. Guiding a fuzzer

a. find two inputs that result in minimum and maximum resource
consumption

I Low resource consumption: invalid input
I High resource consumption: valid input

b. find enough inputs that result in the biggest code coverage

I information on branches taken
I exit codes indicating valid/invalid input, length, etc.

7/20



Preliminaries — Side-channels (applications)

1. Uncovering a secret
– PIN, password, secret key, etc.
– “Squeezing a key through a carry bit”, Filippo Valsorda (34C3)

2. Guiding a fuzzer
a. find two inputs that result in minimum and maximum resource

consumption

I Low resource consumption: invalid input
I High resource consumption: valid input

b. find enough inputs that result in the biggest code coverage

I information on branches taken
I exit codes indicating valid/invalid input, length, etc.

7/20



Preliminaries — Side-channels (applications)

1. Uncovering a secret
– PIN, password, secret key, etc.
– “Squeezing a key through a carry bit”, Filippo Valsorda (34C3)

2. Guiding a fuzzer
a. find two inputs that result in minimum and maximum resource

consumption
I Low resource consumption: invalid input
I High resource consumption: valid input

b. find enough inputs that result in the biggest code coverage

I information on branches taken
I exit codes indicating valid/invalid input, length, etc.

7/20



Preliminaries — Side-channels (applications)

1. Uncovering a secret
– PIN, password, secret key, etc.
– “Squeezing a key through a carry bit”, Filippo Valsorda (34C3)

2. Guiding a fuzzer
a. find two inputs that result in minimum and maximum resource

consumption
I Low resource consumption: invalid input
I High resource consumption: valid input

b. find enough inputs that result in the biggest code coverage
I information on branches taken
I exit codes indicating valid/invalid input, length, etc.

7/20



Preliminaries — Smartcards

Example of a smartcard (banking card, public domain)

8/20



Preliminaries — Smartcards

• Embedded systems providing (security-related) applications
– Banking card, telephony (SIM) card, OV-Chipkaart
– Contact vs. contactless cards
– Personalization or provisioning
– Smartcard terminal

• Standardized through ISO7816[2]

– Application Protocol Data Unit (APDU), “message”
– Status words

• Java Card

– Programming language: subset of Java
– Not limited to one hardware platform
– Implements ISO7816

9/20



Preliminaries — Smartcards

• Embedded systems providing (security-related) applications
– Banking card, telephony (SIM) card, OV-Chipkaart
– Contact vs. contactless cards
– Personalization or provisioning
– Smartcard terminal

• Standardized through ISO7816[2]
– Application Protocol Data Unit (APDU), “message”
– Status words

• Java Card

– Programming language: subset of Java
– Not limited to one hardware platform
– Implements ISO7816

9/20



Preliminaries — Smartcards

• Embedded systems providing (security-related) applications
– Banking card, telephony (SIM) card, OV-Chipkaart
– Contact vs. contactless cards
– Personalization or provisioning
– Smartcard terminal

• Standardized through ISO7816[2]
– Application Protocol Data Unit (APDU), “message”
– Status words

• Java Card
– Programming language: subset of Java
– Not limited to one hardware platform
– Implements ISO7816

9/20



Research questions

1. What fuzzers are already using side-channels?
2. How can we safely interface a Java Card smartcard with the fuzzer

AFL?
3. How can we provide the fuzzer AFL with side-channel information?

10/20



Case studies

Case study I: PasswordEq
• Custom Java Card applet
• Fixed password of 10 bytes
• Two password compare instructions:

1. Unsafe with regards to timing
2. Safe with regards to timing

• Status words report Incorrect length, Correct/incorrect password

• Instruction set discovery using status words

11/20



Case studies

Case study I: PasswordEq
• Custom Java Card applet
• Fixed password of 10 bytes
• Two password compare instructions:

1. Unsafe with regards to timing
2. Safe with regards to timing

• Status words report Incorrect length, Correct/incorrect password

Case study II: Unprovisioned SIM card
• Instruction set discovery using status words

11/20



Experiments

Highlighting two of the six experiments:
1. Smartcard instruction set discovery using status words
2. PasswordEq password extraction using status words and timing

Materials used for these experiments:
• JavaCOS A40 Java Card smartcard / unprovisioned SIM card
• OmniKey CardMan 5121 smartcard terminal
• Laptop3 running a Linux distribution
• Vanilla AFL
• Custom interface program

– Translation layer between AFL and Java Card
– Filtering of unwanted inputs
– Logging

3 i5-3320M @ 2.60GHz CPU, 16GB memory

12/20



Experiments — Setup

AFL

input

interface

shared memory

terminal smartcard

APDU
processing

status words

mutating

Schematic overview of the interaction between smartcard and AFL

13/20



Experiment I: smartcard instruction set discovery

• Unprovisioned / non-personalized SIM card
• Black-box approach
• Pseudo side-channel status words
• Looking for status words that indicate “an implemented instruction”
• Ideally faster than brute-force approach, due to feedback loop
• Fuzzing time: 30 minutes

• Throughput: 17 APDUs per second
• 109 instructions found
• Estimated brute-force time: 14 minutes

• Fuzzing for finding a smartcard’s instruction set works
• Using a fuzzer is less time-efficient than a brute-force approach

14/20



Experiment I: smartcard instruction set discovery

• Unprovisioned / non-personalized SIM card
• Black-box approach
• Pseudo side-channel status words
• Looking for status words that indicate “an implemented instruction”
• Ideally faster than brute-force approach, due to feedback loop
• Fuzzing time: 30 minutes

Results:
• Throughput: 17 APDUs per second
• 109 instructions found

• Estimated brute-force time: 14 minutes

• Fuzzing for finding a smartcard’s instruction set works
• Using a fuzzer is less time-efficient than a brute-force approach

14/20



Experiment I: smartcard instruction set discovery

• Unprovisioned / non-personalized SIM card
• Black-box approach
• Pseudo side-channel status words
• Looking for status words that indicate “an implemented instruction”
• Ideally faster than brute-force approach, due to feedback loop
• Fuzzing time: 30 minutes

Results:
• Throughput: 17 APDUs per second
• 109 instructions found
• Estimated brute-force time: 14 minutes

• Fuzzing for finding a smartcard’s instruction set works
• Using a fuzzer is less time-efficient than a brute-force approach

14/20



Experiment I: smartcard instruction set discovery

• Unprovisioned / non-personalized SIM card
• Black-box approach
• Pseudo side-channel status words
• Looking for status words that indicate “an implemented instruction”
• Ideally faster than brute-force approach, due to feedback loop
• Fuzzing time: 30 minutes

Results:
• Throughput: 17 APDUs per second
• 109 instructions found
• Estimated brute-force time: 14 minutes

Conclusion:
• Fuzzing for finding a smartcard’s instruction set works
• Using a fuzzer is less time-efficient than a brute-force approach

14/20



Experiment II: PasswordEq password extraction

Recap of the PasswordEq Java Card applet:
• Fixed password of 10 bytes
• Two password checking instructions:

1. Unsafe with regards to timing
2. Safe with regards to timing

• Status words report Incorrect length, Correct/incorrect password

15/20



Experiment II: PasswordEq password extraction

Approach:
1. Let AFL generate APDUs
2. Send APDUs to the Java Card smartcard
3. Record status words in AFL’s shared memory
4. Record execution time in AFL’s shared memory
5. Repeat

• The timing side-channel reveals how many characters were correct

– This reduces the search space from 25610 to 256 · 10, or linear
search time rather than exponential

• Ideally, AFL zooms in on the unsafe password checking instruction
• Ideally, AFL finds the correct length, and the correct password, due to

timing information

16/20



Experiment II: PasswordEq password extraction

Approach:
1. Let AFL generate APDUs
2. Send APDUs to the Java Card smartcard
3. Record status words in AFL’s shared memory
4. Record execution time in AFL’s shared memory
5. Repeat

• The timing side-channel reveals how many characters were correct
– This reduces the search space from 25610 to 256 · 10, or linear

search time rather than exponential
• Ideally, AFL zooms in on the unsafe password checking instruction
• Ideally, AFL finds the correct length, and the correct password, due to

timing information

16/20



Experiment II: PasswordEq password extraction

Results, after fuzzing 1 hour and 40 minutes:
• AFL found safe and unsafe instructions
• AFL found the correct length parameter
• AFL did not find the correct password

• Adding timing information did not result in finding the password
• Complexity of the stored password
• Discrepancy between length parameter and length of the supplied

password

– Example: Length parameter: 10, actual password length: 5
– Applet: length correct, password incorrect

17/20



Experiment II: PasswordEq password extraction

Results, after fuzzing 1 hour and 40 minutes:
• AFL found safe and unsafe instructions
• AFL found the correct length parameter
• AFL did not find the correct password

Conclusion
• Adding timing information did not result in finding the password
• Complexity of the stored password
• Discrepancy between length parameter and length of the supplied

password
– Example: Length parameter: 10, actual password length: 5
– Applet: length correct, password incorrect

17/20



Future work

• Fully automated instruction set discovery using side-channels

• Feeding a power side-channel to AFL
• White-box instrumentation of Java Card applets

18/20



Future work

• Fully automated instruction set discovery using side-channels
• Feeding a power side-channel to AFL

• White-box instrumentation of Java Card applets

18/20



Future work

• Fully automated instruction set discovery using side-channels
• Feeding a power side-channel to AFL
• White-box instrumentation of Java Card applets

18/20



Wrapping up

• Research questions
1. What fuzzers are already using side-channels?
2. How can we safely interface a Java Card smartcard with the

fuzzer AFL?
3. How can we provide the fuzzer AFL with side-channel

information?

1. DifFuzz
2. Custom interface program
3. Store it in AFL’s shared memory

19/20



Wrapping up

• Research questions
1. What fuzzers are already using side-channels?
2. How can we safely interface a Java Card smartcard with the

fuzzer AFL?
3. How can we provide the fuzzer AFL with side-channel

information?

1. DifFuzz

2. Custom interface program
3. Store it in AFL’s shared memory

19/20



Wrapping up

• Research questions
1. What fuzzers are already using side-channels?
2. How can we safely interface a Java Card smartcard with the

fuzzer AFL?
3. How can we provide the fuzzer AFL with side-channel

information?

1. DifFuzz
2. Custom interface program

3. Store it in AFL’s shared memory

19/20



Wrapping up

• Research questions
1. What fuzzers are already using side-channels?
2. How can we safely interface a Java Card smartcard with the

fuzzer AFL?
3. How can we provide the fuzzer AFL with side-channel

information?

1. DifFuzz
2. Custom interface program
3. Store it in AFL’s shared memory

19/20



Thanks for your attention!

Stay safe!

20/20



“Zoom etiquette”

• Question round after the presentation:
– Keep audio transmission disabled.
– Question or comment? Announce it in chat.
– Briefly enable audio transmission when given a turn.

1/3



References I

american fuzzy lop.
http://lcamtuf.coredump.cx/afl/.
Fuzzer used in this thesis.

ISO Central Secretary.
Identification cards — Integrated circuit cards — Part 4:
Organization, security and commands for interchange.
Standard ISO/IEC 7816-4:2013, International Organization for
Standardization, Geneva, CH, 2013.

Shirin Nilizadeh, Yannic Noller, and Corina S. Păsăreanu.
Diffuzz: Differential fuzzing for side-channel analysis.
In Proceedings of the 41st International Conference on Software
Engineering, ICSE ’19, pages 176–187, Piscataway, NJ, USA, 2019.
IEEE Press.

2/3

http://lcamtuf.coredump.cx/afl/


List of experiments

1. DifFuzz paper
2. Exposing a timing side-channel in a Java Card applet
3. Using DifFuzz to fuzz a Java Card applet on a smartcard
4. Status words as pseudo side-channel information for AFL
5. Smartcard instruction set discovery using status words
6. Status words, timing, AFL, PasswordEq

3/3


	Context / Preliminaries
	Research questions / Case studies
	Experiments
	Future work
	Wrapping up
	Appendix

